

Università degli Studi di Padova

Development of a Fine Steering Tip/Tilt Mechanism for Space Applications

Armando Grossi - 36th Cycle

Supervisor: Prof. Ugo Galvanetto

Industrial Supervisor: Eng. Emanuele Piersanti

PhD Course in Science, Technologies and Measurements for Space Admission to third year - 06/09/2021

- **Q** Research Project Objectives
- □ Actuator Breaboard
 - Piezo actuator tests
 - o CoMA tests
 - o MAiA tests
- Mechanism critical design
- 🖵 FEA
- Work activity

1222+2022

UNIVERSITÀ

degli Studi di Padova

Actuator Breadboard

- During PhD first year, a preliminary design of the mechanism actuators has been done.
- Designed actuator consists of:
 - o a piezoelectric actuator: PI PICMA Stack Multilayer P-885.91;
 - a compliant mechanical amplifier, necessary to increase piezo displacement.
- A breadboard of the actuator has been realized to perform several tests during PhD second year.

Piezo actuator tests: free displacement

- **Results:**
 - free displacement @ 120 V = 44.5 μ m: 17 % > nominal free displacement (38 μ m)
 - displacement curve shows a strong hysteresis (as expected, due to open-loop control) .

Armando Grossi

CoMA tests: imposed displacement

- Purpose: characterize CoMA output displacements (along major axis), as a function of an imposed input displacement (along minor axis) to validate FE model.
- Unit Under Test: Compliant Mechanical Amplifier (CoMA), mounted on a GSE used to impose an input displacement.
- Measurement Device: CMM (Coordinate Measuring Machine)

🗕 FEA 🔶 Measured

Results: measured output displacements agree with FEA results

Armando Grossi

MAIA tests: free displacement

- measured output displacements agree with FEA results, if piezo free displacement measurement values are assumed
- piezo hysteresis visible in the displacement curve

MAIA test: displacement against a load

- Purpose: characterize MAiA output displacements when it works against a load having a stiffness K (this load stiffness simulates the stiffness of the optical payload).
- Unit Under Test: Mechanically Amplified Piezoelectric Actuator (MAiA), mounted in a GSE including two stacks of belleville springs (having a resulting stiffness K).
- Measurement Device: CMM (Coordinate Measuring Machine)

MAiA tests: modal survey

- Purpose: FE model validation, determining first frequency of MAiA
- Unit Under Test: Mechanically Amplified Piezoelectric Actuator (MAiA), including a support element helping accelerometer assembly (note: accelerometer dimensions are not negligible in this case)
- Measurement Device: Shaker

Test specs

Acceleration : 0.2 g Frequency: 20-2000 Hz Sweep rate: 2 Oct/min

	X input		Y input		Z input	
	Test	FEA	Test	FEA	Test	FEA
Max Acceleration Response [g]	5.2	4.75	4.09	4.17	5.66	4.45
Frequency [Hz]	218	204.6	218	214.3	545	546.6

Results:

- a good match between measured and calculated response curves is visible;
- major discrepancy is visible when input acceleration is applied along X axis.

Armando Grossi

G.COLOMBO

MAiA tests: thermal-vacuum

- Purpose: verify piezo actuator preload at extreme survival temperatures (-45°C and +85°C).
- Unit Under Test: Mechanically Amplified Piezoelectric Actuator (MAiA).
- Measurement Device: Thermal-Vacuum Chamber (TVAC).
- Results:
 - two separated tests performed at -45°C and +85°C;
 - piezo preload is maintained at extreme temperatures;
 - MAiA has been tested after each test, showing a nominal behaviour.

Armando Grossi

Mechanism: critical design

12

- Preliminary mechanism designed during the first year, has been defined considering breadboard results.
- The Fine Steering Tip/Tilt Mechanism (FSTTM) consists of:
 - **base support**: the actuators are fixed on it through screws (it works also as a fixture for the environmental tests).
 - **4 MAiA**: actuators providing the displacements necessary to perform the required DoF (tip/tilt and piston).
 - **interface platform**: element connecting actuators to the optical payload.
 - **central membrane**: flexure attached to the Interface platform through screws, and to the base support through a central cylinder, it stiffens the mechanism against launch loads.
 - **stop**: element fixed on the base support, whose aim is to limit the piezo preload decrement under axial loads (Z axis).

Mechanism: critical design

Optical

Payload

Міггог

Cell

13

- In addition to the FSTTM:
 - **Optical Payload:** a flat mirror $\phi = 90$ mm, glued in an INVAR cell through RTV pads (this is a generic payload, not properly designed for this research project).
 - Actuator position control system: to control MAiA displacements in closed loop, each actuator has a dedicate capacitive sensor.

Tests with Capacitive Sensors

- Several tests have been performed using selected capacitive sensors to:
 - verify the proposed control strategy;
 - measure MAiA output displacement, as a function of the applied voltage.
- Other tests have to be done, to properly set-up the capacitive sensors control system.

FEA: requirements

- Several Finite Element Analyses (FEA) have been performed on the FSTTM, to verify following requirements:
 - □ 1^{st} eigenfrequency > 120 Hz (≥ 10% mass fraction);
 - survival under environmental loads:
 - 30g QSL in any orientation (not simultaneously);
 - 20g QSL in any orientation simultaneously;
 - Sine in any orientation (not simultaneously);
 - Random in any orientation (not simultaneously);
 - Shock in any orientation (not simultaneously);
 - Operative temperature range [-30 ; +55] °C;
 - Survival temperature range [-45 ; +85] °C.

Sine				
5 Hz	0.55 g			
21 Hz	9.76 g			
21-60 Hz	20 g			
60-100 Hz	6 g			

Random				
20-100 Hz	0.05 g²/Hz			
100-300 Hz	0.25 g²/Hz			
300-2000 Hz	0.0016 g²/Hz			
g RMS	10.24			

NAVAR P		

Shock				
100 Hz	20 g			
1000 Hz	500 g			
5000 Hz	300 g			

• 1st eigenfrequency (having a mass fraction > 10%) : 165 Hz > required 120 Hz

Mode #

# Mode	Frequency	Mass Fraction	Note
1	100.8	< 1%	Torsion
2	142.58	3.5% (X,Y)	Tip/Tilt
3	142.65	3.5% (X,Y)	Tip/Tilt
4	165.9	69.7% (Z)	Piston
5	262.17	20% (Z)	Piston

4th mode: 165 Hz Piston of the system

Armando Grossi

FEA: Quasi-Static Loads

- Worst analysed case
 - Random vibrations:
 - 59 g RMS (3σ) CoG response along X;
 - 59 g RMS (3σ) CoG response along Y;
 - \circ ~~ 89 g RMS (3\sigma) CoG response along Z.

V2 L8 C1 G5

- FSTTM survives at Quasi-Static loads:
 - \circ ~ up to 59 g along X;
 - \circ up to 59 g along Y;
 - \circ up to 89 g along Z.
- Assumed Factor of Safety (FoS) for QSL:
 - Metallic parts:
 - FoSy = 1.375
 - FoSu = 1.5625
 - Glass/Glue parts:
 - FoSu = 3.125

2.76E+8

2.45E+0

2.15E+8

1.84E+8

1.53E+0

1.23E+8

6.14E+7

7.18E-4

6.73E-4

6.28E-4

5.83E-4

5.38E-4

4.93E-4

4.48E-4

4.03E-4

3.58E-4

3.13E-4 2.69E-4

2.24E-4

1.79E-4

8.89E-5

4.4E-5

-8.74E-7

 Operative analyses performed to evaluate the maximum performance of the mechanism, in terms of piston and tip/tilt

- \circ 159 μ m (>120 μ m required)
 - [@1g, T=20°C]

- 500 arcsec (>120 arcsec required)
 - ≈ 2.4 mrad
 - [@1g, T=20°C]

Work Activity: main steps

19

Thanks for the attention

Università degli Studi di Padova