# The STIX Image Reconstruction Concept

P. Massa, F. Benvenuto, A. M. Massone and M. Piana 7th Metis Workshop, November 12, 2019

MIDA group - Methods for Image and Data Analysis Department of Mathematics, University of Genoa





- 1. The STIX instrument
- 2. Visibility-based imaging
- 3. Count-based imaging
- 4. Results

## The STIX instrument

#### Goal

Determining the timing, location, and spectrum of accelerated electrons in the corona and chromosphere.

### Goal

Determining the timing, location, and spectrum of accelerated electrons in the corona and chromosphere.

### How?

By measuring the timing, location, and spectrum of the thermal and non-thermal hard X-ray emissions.

### Goal

Determining the timing, location, and spectrum of accelerated electrons in the corona and chromosphere.

### How?

By measuring the timing, location, and spectrum of the thermal and non-thermal hard X-ray emissions.

MIDA@UNIGE is involved in the ground based image and data analysis

## The instrument



# X-ray window

## The instrument



## The instrument





Benz, A.O., Krucker, S., Hurford, G.J., et al. 2012



Benz, A.O., Krucker, S., Hurford, G.J., et al. 2012





Flare locator





## Detector/Electronics Module



Benz, A.O., Krucker, S., Hurford, G.J., et al. 2012

## Detector/Electronics Module



Benz, A.O., Krucker, S., Hurford, G.J., et al. 2012

















- Energy range: 4-150 keV
- Energy resolution: 1-15 keV
- Finest angular resolution: 7 arcsec
- Field of view: 2°
- Image placement accuracy:  $\sim$  4 arcsec

## Visibility-based imaging

We denote by  $\phi$  the photon flux.

### Definition

The value of the Fourier transform of  $\boldsymbol{\phi}$ 

$$V(\boldsymbol{\xi}) = \int_{\mathbb{R}^2} \phi(\mathbf{x}) \exp(2\pi i \boldsymbol{\xi} \cdot \mathbf{x}) \, d\mathbf{x}.$$

is named visibility associated to  $\phi$  and computed at the point  $\boldsymbol{\xi}$ .







Giordano et al., 2015 $\boldsymbol{\xi} = \mathbf{k}^{f} \frac{L_{1} + L_{2}}{S} - \mathbf{k}^{r} \frac{L_{2}}{S}$ with  $\mathbf{k}^{f/r} = \left(\frac{\cos \alpha^{f/r}}{p^{f/r}}, \frac{\sin \alpha^{f/r}}{p^{f/r}}\right).$ 



Krucker, S., Benz, A.O., et al. 2013





Krucker, S., Benz, A.O., et al. 2013

Visibilities formation model (Giordano et al., 2015)

The value of the visibility computed in the spatial frequency  $\xi$  sampled by the subcollimator is given by

$$V(m{\xi})\simeq rac{1}{4M_1}[(m{C}-m{A})+i(m{D}-m{B})]\exp\left(irac{\pi}{4}
ight)\;,$$

where  $M_1$  is determined by hardware parameters of the instrument.

### Image reconstruction problem from visibilities

Given  $v = (V(\xi_1), \ldots, V(\xi_{30}))$  the vector of the visibilities measured by STIX, we want to determine the photon flux  $\phi$  that satisfies

$$\mathcal{F}\phi = \mathbf{v}$$
,

where  $\mathcal{F}$  is the Fourier transform computed in the spatial frequencies  $\boldsymbol{\xi}_1, \ldots, \boldsymbol{\xi}_{30}$  sampled by STIX.









### Count formation model (Massa P. et al., 2019)

The number of photon counts recorded by the pixels of a detector is given by:

$$\begin{split} \mathbf{A} &\simeq \int_{\mathbb{R}^2} \phi(\mathbf{x}) \left( M_0 - 2M_1 \cos\left( \left( 2\pi \boldsymbol{\xi} \cdot \mathbf{x} - \frac{\pi}{4} \right) \right) \right) \, d\mathbf{x} \\ \mathbf{B} &\simeq \int_{\mathbb{R}^2} \phi(\mathbf{x}) \left( M_0 - 2M_1 \sin\left( \left( 2\pi \boldsymbol{\xi} \cdot \mathbf{x} - \frac{\pi}{4} \right) \right) \right) \, d\mathbf{x} \\ \mathbf{C} &\simeq \int_{\mathbb{R}^2} \phi(\mathbf{x}) \left( M_0 + 2M_1 \cos\left( \left( 2\pi \boldsymbol{\xi} \cdot \mathbf{x} - \frac{\pi}{4} \right) \right) \right) \, d\mathbf{x} \\ \mathbf{D} &\simeq \int_{\mathbb{R}^2} \phi(\mathbf{x}) \left( M_0 + 2M_1 \sin\left( \left( 2\pi \boldsymbol{\xi} \cdot \mathbf{x} - \frac{\pi}{4} \right) \right) \right) \, d\mathbf{x}. \end{split}$$

where  $M_0$ ,  $M_1$  are determined by hardware parameters of the instrument.

## Counts forward operator

$$H: \phi \longmapsto \begin{cases} \int_{\mathbb{R}^2} \phi(\mathbf{x}) \left( M_0 - 2M_1 \cos\left( \left( 2\pi \boldsymbol{\xi}_1 \cdot \mathbf{x} - \frac{\pi}{4} \right) \right) \right) d\mathbf{x} \\ \int_{\mathbb{R}^2} \phi(\mathbf{x}) \left( M_0 - 2M_1 \sin\left( \left( 2\pi \boldsymbol{\xi}_1 \cdot \mathbf{x} - \frac{\pi}{4} \right) \right) \right) d\mathbf{x} \\ \int_{\mathbb{R}^2} \phi(\mathbf{x}) \left( M_0 + 2M_1 \cos\left( \left( 2\pi \boldsymbol{\xi}_1 \cdot \mathbf{x} - \frac{\pi}{4} \right) \right) \right) d\mathbf{x} \\ \int_{\mathbb{R}^2} \phi(\mathbf{x}) \left( M_0 + 2M_1 \sin\left( \left( 2\pi \boldsymbol{\xi}_1 \cdot \mathbf{x} - \frac{\pi}{4} \right) \right) \right) d\mathbf{x} \\ \vdots \end{cases}$$

### Counts forward operator

$$H: \phi \longmapsto \begin{cases} \int_{\mathbb{R}^2} \phi(\mathbf{x}) \left( M_0 - 2M_1 \cos\left( \left( 2\pi \boldsymbol{\xi}_1 \cdot \mathbf{x} - \frac{\pi}{4} \right) \right) \right) d\mathbf{x} \\ \int_{\mathbb{R}^2} \phi(\mathbf{x}) \left( M_0 - 2M_1 \sin\left( \left( 2\pi \boldsymbol{\xi}_1 \cdot \mathbf{x} - \frac{\pi}{4} \right) \right) \right) d\mathbf{x} \\ \int_{\mathbb{R}^2} \phi(\mathbf{x}) \left( M_0 + 2M_1 \cos\left( \left( 2\pi \boldsymbol{\xi}_1 \cdot \mathbf{x} - \frac{\pi}{4} \right) \right) \right) d\mathbf{x} \\ \int_{\mathbb{R}^2} \phi(\mathbf{x}) \left( M_0 + 2M_1 \sin\left( \left( 2\pi \boldsymbol{\xi}_1 \cdot \mathbf{x} - \frac{\pi}{4} \right) \right) \right) d\mathbf{x} \\ \vdots \end{cases}$$

#### Inverse problem from counts

Given  $c = (A_1, B_1, C_1, D_1, ...)$  the vector of counts measured by STIX pixels, we want to determine  $\phi$  such that

$$H\phi = c$$

### Advantages of the visibility-based framework:

- algorithms can exploit FFT;
- visibilities are independent of a constant background.

### Advantages of the visibility-based framework:

- algorithms can exploit FFT;
- visibilities are independent of a constant background.

### Advantages of the count-based framework:

- data are more noumerous;
- counts have a higher SNR with respect to the one of the real and imaginary parts of the visibilities (Massa P., et al, 2019).

STIX will inherit a lot of image reconstruction algorithms developed for RHESSI:

## Visibility-based

- MEM NJIT
- MEM GE
- VIS FWDFIT
- UV SMOOTH
- VIS CS
- VIS WV

### **Count-based**

- Back Projection
- Clean
- Forward Fit
- Pixon
- EM

# Results

Data are simulated with a Monte Carlo method implemented in the STIX software.

Data are simulated with a Monte Carlo method implemented in the STIX software.

Algorithms used

Visibility-based:

- VIS CLEAN (deconvolution)
- MEM GE (maximum entropy method)

Count-based:

• Expectation Maximization for Poisson data (EM)

## Footpoint flare - 1

21

## Footpoint flare - 2

### Loop flare - 1



23

### Loop flare - 2

#### Summary:

- we showed that STIX is a Fourier imager;
- we described the count formation model for STIX.

#### Summary:

- we showed that STIX is a Fourier imager;
- we described the count formation model for STIX.

#### Future work:

- we will implement new algorithms for solving the STIX image reconstruction problem;
- we will refine the count formation model.

### References

- Benz, A., et al. The Spectrometer Telescope for Imaging X-rays on board the Solar Orbiter mission. Proc. SPIE, 8443 (2012).
- Krucker, S., et al. The Spectrometer/telescope for Imaging X-rays on Board the ESA Solar Orbiter Spacecraft. Nuclear Inst. and Methods in Physics Research, A 732 (2013).
- Vilmer, N., Krucker, S. et al. *The spectrometer telescope for imaging X-rays* (*STIX*) *on board Solar Orbiter.* 40th COSPAR Scientific Assembly, 40 (2014)
- Giordano, S., et al. *The Process of Data Formation for the Spectrometer/Telescope for Imaging X-rays (STIX) in Solar Orbiter.* SIAM Journal on Imaging Sciences, 8.2 (2015).
- Massa, P., et al. Count-based Imaging Model for the Spectrometer/Telescope for Imaging X-rays (STIX) in Solar Orbiter. Astronomy & Astrophysics, 624 (2019).

### References

- Benz, A., et al. The Spectrometer Telescope for Imaging X-rays on board the Solar Orbiter mission. Proc. SPIE, 8443 (2012).
- Krucker, S., et al. The Spectrometer/telescope for Imaging X-rays on Board the ESA Solar Orbiter Spacecraft. Nuclear Inst. and Methods in Physics Research, A 732 (2013).
- Vilmer, N., Krucker, S. et al. *The spectrometer telescope for imaging X-rays* (*STIX*) *on board Solar Orbiter.* 40th COSPAR Scientific Assembly, 40 (2014)
- Giordano, S., et al. *The Process of Data Formation for the Spectrometer/Telescope for Imaging X-rays (STIX) in Solar Orbiter.* SIAM Journal on Imaging Sciences, 8.2 (2015).
- Massa, P., et al. Count-based Imaging Model for the Spectrometer/Telescope for Imaging X-rays (STIX) in Solar Orbiter. Astronomy & Astrophysics, 624 (2019).

# Thank you for the attention!