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 Research background and motivations

 Research methodology

 Properties and models for hypervelocity impact fragmentation
• Properties and models for debris-cloud velocities

• Properties and models for perforation hole 

• Properties and models for large central fragment

 Experimental research activities
• Experimental study on hypervelocity impact debris-cloud

• Experimental study on backwall damage response

• Fragments recovery experiment

 Conclusions & training activity 
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 Space debris condition
 Fragmentation incidents on orbit  Semi-empirical tool in CISAS -

CST

S. Lan, et al. 2014

Research background

 Orbital space debris
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 Laboratory tests
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• To study the fundamental physics of the hypervelocity impact fragmentation subjected to
thin-plate impact, and to characterize the fragmentation properties.

• To develop semi-empirical fragmentation models for hypervelocity impact with consideration
of projectile shape effect.

 Space debris shields
 Thin-plate impact & shape effect

Whipple F.L in 1947

Research background

 Whipple shield
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Incoming Projectile

 Stuffed Whipple shields & Multi-shock shields

Piekutowski A.J. 1996

Motivations
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 Numerical simulation- Smooth Particles Hydrodynamics (SPH)

 Meshless method: filling up with particles.

 Extreme deformation and high pressure condition.

 Parallel SPH code-PTS of HIRC/CARDC

• more efficient & lower occupation of computation resource.

 More than 150 simulation cases had been performed in the PhD project.

Research methodology
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 Validations for simulation model

The deviation :               11%                                               5% 

Length / Width

65.7mm / 41.6mm

66.4mm / 46.7mm

Diameter

∅ 6.95mm

∅ 7.3mm

Sim

Exp

 Debris cloud  Perforation hole  Backwall damage

SimExp
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 A total of 20 tests had been performed in the PhD project.

 Test facilities in HIRC:

• Two-stage-gas-gun, caliber 16mm and 7.6mm, muzzle

velocity up to 9km/s.

• Sequential laser shadowgraph instrument, Tinterval ≥10ns

Research methodology
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 Fragments recovery test setup
 Hypervelocity impact tests

a—pulsed lasers; b—optical fiber; c—light-separating instrument; d—collimating len-1; 
e—measuring area; f—collimating len-2; g—image system; h—control system 

 Projectiles and sabot

 Debris cloud
of impact at
above 7km/s

L/d=1/3 L/d=1 L/d=1.5
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 For the case of 7km/s to 2mm bumper

Projectile material

Bumper material

Properties and models for debris-cloud velocities

Shengyu Zou FRAGMENTATION MODELS FOR HYPERVELOCITY IMPACT

• Flat disk-like projectile produces a
columnar debris cloud, in which the
projectile material falls far behind the
bumper material.

• Spherical projectile produces a more
expanding debris cloud similar to
spherical shell, in which the projectile
material is located at the front part.

• Rod-like projectile produces a elliptical
debris cloud, in which large remain of
projectile is located at the leading part.

 Study on debris cloud geometry
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 Characterization of debris cloud velocities
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• Disk-like projectile：lower expanding velocity.

• Sphere and rod-like projectile: higher expanding velocity.

• Thicker sheet : lower expanding velocity.

• Nonlinear relationship between Ve and V0 .
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• Disk-like projectile： lower or backward axial

moving velocity.

• Sphere and rod-like projectile: higher projectile

fragments velocity.

• Thicker sheet : little effect on the projectile

leading-edge velocity.

• Nearly linear relationship between Vpf and V0 .

• Sphere-like projectile: lower velocity of Vbf .

• Disk-like and rod-like projectile：higher velocity

of Vbf .

• Linear relationship between Vbf / V0 and L/d

where L/d < 1.

• Exponential relationship between Vbf / V0 and L/d

where L/d ≥ 1.

Properties and models for debris-cloud velocities

 Expanding velocity 

Ve/Vp vs L/d

 Projectile front velocity 

Vpf/Vp vs L/d

 Bumper front velocity 

Vpf/Vp vs L/d

Ref: S. Zou, L. Olivieri a, Z. Ma c, C. Giacomuzzo a,b, A. Francesconi. 72nd IAC, Oct. 2021.
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Models for Debris-cloud velocities

Shengyu Zou FRAGMENTATION MODELS FOR HYPERVELOCITY IMPACT
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𝜸 Parameters Model for Vf Model for Ve

C 0.7053 0.3953
𝛼 0.1761 0.3623

𝛽 -0.1391 -0.2355

Properties and models for debris-cloud velocities

 Semi-empirical dimensionless model 

 Calibration and validation with test data

 Calibrated parameters table

 Validation for front velocity of spherical impact  Validation for expanding velocity of spherical impact
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Properties and models for perforation hole 

Models for perforation hole
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Shape effect 
consideration

Ref: S. Zou, L. Olivieri a, Z. Ma c, C. Giacomuzzo a,b, A. Francesconi. 72nd IAC, Oct. 2021.
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Model-2 prediction for 7km/s-2mm
Model-3 prediction for 7km/s-2mm
Simu data of t=2mm&v=7km/s
Model-2 prediction for 5km/s-1mm
Model-3 prediction for 5km/s-1mm
Simu data of t=2mm&v=7km/s
Model-2 prediction for 3km/s-1mm
Model-3 prediction for 3km/s-1mm
Simu data of t=2mm&v=7km/s
Model-1 prediction for 7km/s-2mm
Model-1 prediction for 3km/s-1mm

𝑓 𝐿/𝑑

 Comparisons and 
Validation 

Dh /dp vs L/d

Dh /dp vs Vp Dh /dp vs t/L
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 The effect of projectile shape L/d
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MLF was normalized by dividing it by the projectile mass Mp.
VLF was normalized by dividing it by the impact velocity Vp.
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Properties and models for large central fragment

MLF /Mp vs L/d VLF /Vp vs L/d

• Disk-like projectiles (L/d ≪ 1) are easiest to be fragmented,

and have relative lower velocity of the large fragment.

• Rod-like projectiles are usually less fragmented and less

impeded by thin plate target during hypervelocity impacts.
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 t=0.5mm-v=7km/s
 t=1mm-v=7km/s
 t=2mm-v=7km/s
 t=3mm-v=7km/s
 t=0.5mm-v=5km/s
 t=1mm-v=5km/s
 t=2mm-v=5km/s
 t=3mm-v=5km/s
 t=0.5mm-v=3km/s
 t=1mm-v=3km/s
 t=2mm-v=3km/s
 t=3mm-v=3km/s
 Fitted model

• MLF is dependent on projectile shape, target thickness and

impact velocity, while VLF appears to depend on projectile

shape and target thickness, but only slightly depend on impact

velocity.

11-25



 The effect of impact velocity

Shengyu Zou FRAGMENTATION MODELS FOR HYPERVELOCITY IMPACT

Properties and models for large central fragment
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 Geometrical scaling investigation

 Fragmentation threshold-velocity investigation

• VLF is geometrical scaling for both spherical and non-spherical projectiles, while MLF

is not geometrical scaling but is size-dependent.
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 The effect of target thickness ratio t/L

Shengyu Zou FRAGMENTATION MODELS FOR HYPERVELOCITY IMPACT

Properties and models for large central fragment
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 Investigation on optimum bumper-thickness-ratio
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MLF/Mp vs t/L VLF/Vp vs t/L

• a sphere and a short-cylinder (L/d >1) have a lower optimum t/L ratio than a disk-like

projectile (L/d <1) with equivalent initial mass.

• for designing a more conservative shield, it is necessary to carry out the evaluation tests

by using disk-like projectiles rather than spheres or short cylinders.
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 Dimensional analysis for modelling

 The mass of the large central fragment

Shengyu Zou FRAGMENTATION MODELS FOR HYPERVELOCITY IMPACT

Properties and models for large central fragment
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Variables Units Dimensions
t, L, d m 𝐿෠

Vp, Vf, c m/s 𝐿෠ ȉ 𝑇෠ ିଵ

Mp, MLF kg 𝑀෡

𝜌p kg/m3 𝑀෡ ȉ 𝐿෠ିଷ

Y N/m2 𝑀෡ ȉ 𝐿෠ିଵ ȉ 𝑇෠ ିଶ

Kc N/m3/2 𝑀෡ ȉ 𝐿෠ିଵ/ଶ ȉ 𝑇෠ ିଶ

 The units and dimensions of the variables

Based on 𝐏𝐢 theorem, three fundamental variables: mass (𝑀෡), length (𝐿෠), time (𝑇෠).

Nondimensionalization

The model for large-central-fragment mass

 The velocity of the large central fragment

Nondimensionalization
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The model for large-central-fragment
velocity
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 The model for large-central-fragment mass

 Model formulation

Shengyu Zou FRAGMENTATION MODELS FOR HYPERVELOCITY IMPACT

Properties and models for large central fragment
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Parameters
Projectile type

Sphere Cylinder-L/d=1 Cylinder-L/d=2
C 4.471 mm0.561 4.072 mm0.794 4.072 mm0.794

𝜔 -0.561 -0.794 -0.794
𝛼 0.675 0.937 0.577
𝛽 0.316 0.331 0.331
𝛾 0 -1.003 -1.003

 Calibrated parameters table

1 −
𝑀LF
𝑀p

=
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≈ 1                                           for  𝑉p > 𝑉ୡ୤

 Calibration and validation
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Properties and models for large central fragment
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Parameters
Projectile type

Sphere
Cylinder or ellipsoid

L/d=0.2~0.75 L/d=1~2

𝐶ᇱ 0.7306 0.7338 0.7202

𝛼ᇱ 0.0375 0.0895 0.0259

𝛽ᇱ -0.1086 -0.1080 -0.1132

𝛾ᇱ 0 -0.0671 0.1016

 Model formulation

 Calibrated parameters table

 Calibration and validation

 The model for large-central-fragment velocity
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 Debris cloud morphology

 Sphere impact

• an external bubble and an internal structure including front cap, central element

and rear element.

• a hemispherical shell of fragments spalling off the rear side of the projectile .

 Short-cylinder impact

• a spike-like front cone at the leading edge with velocity of up to 4% greater than

impact velocity.

• the head point of the front cone is coincident with the direction of the cylinder

axis, and is dependent on the cylinder’s impact inclination.

 Disk impact
• consist of an external bubble, an internal cone and a front cone with its point

aligned with the inclined direction of the disk axis.

• there is a long columnar structure in the middle, a fast-moving head at about

3% higher than Vp, and a very slow-moving end at only 6% of Vp.

• the columnar structure doesn’t show any tendency to disperse.

Experimental study on hypervelocity impact debris-cloud
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 The inclination effect on backwall damage

Experimental study on backwall damage response

≈47.5° inclined ≈52.5° inclined 

≈62.5° inclined ≈ 𝟕𝟑.5° inclined

≈41° inclined 

 Backwall images from experiments

 Backwall images from simulations

sin ∅cr =
𝐵𝐶

𝐴𝐵
=

𝑣p
𝑈s

• For Al-Al impact at about 6km/s, it is more 
damaging situation when the inclination is 

between 40° to 50°

 Analytic model for critical inclined angel 

𝑈s = 𝑐t +
௞௩p

ଶ

18-25



Shengyu Zou FRAGMENTATION MODELS FOR HYPERVELOCITY IMPACT

 Ballistic limit equation for Whipple shields

WS-1: 𝑡ୠ-𝑆-𝑡୵: 1mm-80mm-2mm WS-2: 𝑡ୠ-𝑆-𝑡୵: 1mm-129mm-7mm

Examination and comparison of two BLE models: Christ-BLE and EMI-BLE.

• Christ-BLE is up to 2 times more conservative for evaluating the performance of spherical impact against WS-1, but it is dangerous when

used for non-spherical impact.

• EMI-BLE is much more conservative than Christ-BLE, and could be applied for non-spherical impacts.

• Both of the two BLEs could not be applied conservatively for the impacts with inclined cylinder .

Experimental study on backwall damage response
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 Fragments recovery and analysis

Fragments recovery experiment

 Before the impact

 After the impact

 Fragments recovery procedures

 Fragments collected from spherical impact

Comparisons of large fragments for impacts with different shaped projectiles

• The disk-like projectile is easiest to be fragmented, sphere is harder to be fragmented

than short-cylinder .

• Impact of short-cylinder with large inclination undergoes a complete fragmentation like a

disk projectile .
20-25
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 Fragments distribution and model

Fragments recovery experiment

1 2 3 4 5 6 7 8

0

20

40

60

80
 sphere-d=8mm
 cylinder-L/d=3/2 inclined 3.5degs
 disk-L/d=1/3 inclined 9.6degs
 cylinder-L/d=2 inclined 79degs
 Fit for sphere
 Fit for disk-L/d=1/3
 Fit for cylinder-L/d=3/2
 Fit for cylinder-L/d=2
 Nashida model for sphere
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 (
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>
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)
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C
N
/(
Va
*(
L/
d)

b *
(
t/
L)

g )

Lfmax/Lpmax

M. Nishida, et al. 2017

Nashida Model:

𝑁௖ 𝑎 𝑉ଵ.ହ⁄ = 50.7𝑒ିଵ .଺௔ ௗ⁄ + 2.9𝑒ିସ.ଷ௔ ௗ⁄

 For sphere impact
ே೎ ௔

௏೛
ഀȉ ௧ ௅⁄ ഁȉ ௅ ௗ⁄ ം = 𝐴ଵ𝑒

஻భ௔ Lpmax⁄
+ 𝐴ଶ𝑒

஻మ௔ Lpmax⁄

 A scaling model developed for impact with shaped projectiles

Parameters 𝛼 𝛽 𝛾 𝐴ଵ 𝐵ଵ 𝐴ଶ 𝐵ଶ

Values 1.5 -3.65 -1.75 1.332 -70.657 0.076 -16.975
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• Characterizing projectile shape effect on debris cloud geometry and debris cloud motions:

- Flat disk-like projectile produces debris cloud with columnar geometry, in which the expansion velocity of debris cloud is
lower, while the leading-edge velocity is relatively higher; the debris cloud produced by a sphere-like projectile has a higher
expansion velocity but a lower leading-edge velocity, that means the debris cloud has a higher level of fragments diffusion; the
fragmentation rate caused by impacting with a rod-like projectile is significantly insufficient, thus the total fragments
population is significantly small, and the debris cloud includes a primary fragment with both mass and velocity close to those
of projectile before collision.

• Properties study and model development for debris-cloud velocities:

- Debris cloud structure for different projectile shape were studied from the debris-cloud morphology based on simulation and
experiments. The debris-cloud velocities were characterized and semi-empirical models for spherical impact have been
developed.

• Properties study and model development for perforation hole :

- Based on simulation data, the sphere or short-cylinder is strongest in the enlargement capability of the perforation hole, while
the rod-like projectile takes lower capability, and the flat disk-like projectile takes the lowest capability. Three semi-empirical
models were proposed and compared.

• Properties study and model development for large central fragment:

- The effects of shape ratio, target thickness ratio and impact velocity on the mass and the velocity of large central fragment were
characterized, and semi-empirical models for the mass and the velocity of large central fragment were developed based on
dimensional analysis, and were calibrated and validated with simulation data.

Conclusions & training activity
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• Investigated on fragmentation threshold velocity :

- There existed two threshold-velocities for judging the fragmentation intensity, one is the threshold-velocity of initiation
fragmentation Vif, and another is the threshold-velocity of catastrophic fragmentation Vcf. Disk-like projectile has the lowest
fragmentation threshold velocity, rod-like projectile has the largest fragmentation threshold velocity, and sphere or short-
cylinder have moderate fragmentation threshold velocity. Short cylinder can be fragmented more easily than sphere at fixed t/d
ratio.

• Investigated on optimum bumper-to-projectile thickness ratio:

- A sphere and a short-cylinder (L/d >1) have a lower optimum t/L ratio than a disk-like projectile (L/d <1). Such that it appears
to be not conservative when sphere or short-cylinder is used to evaluate the effectiveness of a shield against space debris
impacts. Thus for designing a more conservative shield, it is necessary to carry out the evaluation tests by using disk-like
projectiles rather than spheres or short cylinders.

• Investigated on geometrical scaling of large-central-fragment:

- The velocity of the large central fragment is geometrical scaling for both spherical and non-spherical projectiles, while the mass
of the large central fragment is not geometrical scaling but is size-dependent.

• Investigated on the inclination effect on cylindrical impact :

- The work of simulation, experiment and analytic model had performed. The investigation indicates: for inclined impact, the
most damaged area on rear wall was commonly crescent-shaped, and biased away the central craters. For Al-to-Al impact, there
is a more damaging situation when the inclination is between 40° to 50°.

Shengyu Zou FRAGMENTATION MODELS FOR HYPERVELOCITY IMPACT

Conclusions & training activity
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• Investigated on BLE models for damage evaluation:

- Christ-BLE is up to 2 times more conservative in spherical impact for
evaluating the performance Whipple shield-1 employed in our tests, but
it is dangerous when used for non-spherical impact. Another
observation is that Christ-BLE is not applicable for evaluating the
shielding configuration with lower t/d ratio under the impact velocity
higher than 6km/s; It is observed that it is rather conservative with
respective to Christ-BLE, and it is applicable for evaluating the non-
spherical impacts against Whipple shield-2, but it is not applicable for
an inclined impact of right-cylinder.

• Investigated on fragments distribution:

- The projectile shape as well as the impact inclination are effective on
fragments distribution. The mass of the largest-fragment for the
spherical impact is 4 times larger than that of the short-cylinder
(L/d=3/2) impact, and is 10 times larger than that of the disk(L/d=1/3).
This indicates the disk-like projectile is easiest to be fragmented, and a
short-cylinder is easier to be fragmented than a sphere. An scaling
model on the fragments distribution has been developed.

• Educational activities during PhD study:

Conclusions & training activity
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Thanks for your attention
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