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e S Outline

€ Research background and motivations

€ Research methodology

€ Properties and models for hypervelocity impact fragmentation
* Properties and models for debris-cloud velocities
* Properties and models for perforation hole

* Properties and models for large central fragment

€ Experimental research activities

* Experimental study on hypervelocity impact debris-cloud
* Experimental study on backwall damage response

* Fragments recovery experiment

€ Conclusions & training activity
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0 Space debris condition

» Orbital space debris
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Research background

» Fragmentation incidents on orbit

ory -;

S. Lan, et al. 2014
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» Semi-empirical tool in CISAS -
CST

ME Breakup
‘r 77777 - I I.. wwwww g
] Fragments I_j i 1. Fragmentation preprocessing + Structural |
| tracking | 1 | 1 response 1
Eoeois _l 1| 2.Breakupthreshold determination | DEEEE oy
i |
i I
] 1 1. Effective impact 2:paciicinpack
i araas calculation 5 I %
st | calculation ]
21 I 2
I CE
gl 1 4. Fragmentation 3. Fragmentation | | £
1 threshold update level definitian |1 Z
20 | | g
Bl | 5
B I | s
H | 5. Definition of impacts by only bubbles |
i
i
! |
| L+ 3.Definition of damaged ME properties ——————
I
I ! 1
1 | 4. Fragmentation algorithm ] 1
e e e ]




12222022 i UNIVE

a0 g e Research background

O Space debris shields

> Whipple shield > Stuffed Whipple shields & Multi-shock shields » Thin-plate impact & shape effect

Whipple F.L in 1947

Sphere

5.766 mm Diameter
2 Mass =0.7191 g
WHIPPLE Nexte!lKeyIar Fle?xlble P
Stuffed Whipple Multi-Shock i ; ; b e
" £ ¢ i Right Cylinder
Incoming Projectile L ¢ o .055 mm Diameter,
5.055 Lo
ST Al bumper Al bumper Nextel bumpers Mass 07160 g
[ ] [ 17k ; 4-1553
& u 5.22 km/
& Nextel ceramic cloth | & ) "
2 2 g
o . o S
= KeMiar fabric =
Short Rod
I ] [ ] =t e =EEy - 3.988 mm Diameter,
Al rear wall Alrear wall Kevar rear wal Mt Ti7g

5. Mass=12407¢g
4-1554
4.97 km/s

[0 Motivations

Disk

13.00 mm Diameter,

0.759 mm Long

Mass =0.7314 g
4-1511

5.01 km/s

* To study the fundamental physics of the hypervelocity impact fragmentation subjected to
thin-plate impact, and to characterize the fragmentation properties.

* To develop semi-empirical fragmentation models for hypervelocity impact with consideration Piekutowski A.J. 1996
of projectile shape effect.
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00 ciis e Research methodology

0 Numerical simulation- Smooth Particles Hydrodynamics (SPH)

» Meshless method: filling up with particles.
» Extreme deformation and high pressure condition.
» Parallel SPH code-PTS of HIRC/CARDC

* more efficient & lower occupation of computation resource.

» More than 150 simulation cases had been performed in the PhD project.
» Validations for simulation model

v Debris cloud v’ Perforation hole

Length | Width Diameter

D 6.95mm

ey 8.3
U 65.7mm [ 41.6mm

X e
PRI s |
d-) B

Sim

66.4mm | 46.7mm @ 7.3mm

Exp

The deviation : 11% 5%
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e Research methodology
O Hypervelocity impact tests

»> A total of 20 tests had been performed in the PhD project.
» Test facilities in HIRC:

Two-stage-gas-gun, caliber 16mm and 7.6mm, muzzle
velocity up to 9km/s.

Sequential laser shadowgraph instrument,

S V' Projectiles and sabot
T interval — 10ns
7
% ] 2 1 —
< 1_\‘ \. £—|_é:{:|_ Sphere Cylinder
]:[ F —— | S E Y .
3
6 4 c/d= Lyd=1.5,
1—powder chamber; 2—piston; 3—pump tube; 4—launch tube; : |
S5—projectile; 6—impact chamber; 7—target

v' Debris cloud
of impact at
above 7km/s

a—pulsed lasers; b—optical fiber; c—light-separafin;nstmment; d—collimating len-

1
e—measuring area; f—collimating len-2; g—image system; h—control system
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» Fragments recovery test setup
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e Properties and models for debris-cloud velocities

O Study on debris cloud geometry
» For the case of 7km/s to 2mm bumper

-
L3

* Flat disk-like projectile produces a
columnar debris cloud, in which the
projectile material falls far behind the
bumper material.

IR Ch i )

Projectile material

Bumper material =% * Spherical projectile produces a more
expanding debris cloud similar to
spherical shell, in which the projectile

material is located at the front part.

" » Rod-like projectile produces a elliptical
“ debris cloud, in which large remain of
projectile is located at the leading part.
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Properties and models for debris-cloud velocities

O Characterization of debris cloud velocities

> Projectile front velocity > Bumper front velocity > Expanding velocity

V. vs L/d
Vo/Vp vs L/d 105 - VP Ve/Vp vs L/d O 1,/ ¥y 3kn/s2m
7] & 1/ V,~5km/s—2mm
1.0- & o 1.00 - 0. 30 &/ Vy-Tkn/s~2mm
.- — — — —_— = = = = | = = Fitting curve for 3km/s—2mm
= Fitting curve for 5km/s—2mm
0.8 A/ VyTkn/s=1mm 0. 95 — - Fitting curve for 7km/s—2mm
v V,e/ Vy=5km/s=1mm 0. 25 1 @
AV, /V, Tkm/s-2mm bumper
- Iy _ bf Vo /KIV/S-2mm bumper | ey e Nem = = = _—— = - -
. pf’ 07 - E ® V,/V,3km/s-2mm bumper o o
& V/ Vy=5km/s—2mm o N
S pf? 0 N i A V¥, Tkny/s-1mm bumper 4 o/ VYV . mee=mccTotT oo TmorTmees
~ v V. V,=Tkm/s—2mm Z 0.85 ~ 0.20 Q--
= 0.4 o’ "0 = ] & Vy/V, Skm/s-1mm bumper N . o
gm ~ O VoV 3km/s-1mm bumper
0. 80 === Fitting curve for 7km/s-2mm
0.2 L === Fitting curve for Skm/s-2mm 0. 15 -
. i === Fitting curve for 3km/s-2mm :
0.75 === Fitting curve for 7km/s-1mm
1 === Fitting curve for Skm/s-1mm
0.0 0. 70 - === Fitting curve for 3km/s-1mm
: ® = Fitting curve for 2mm 0.10
1 ° === Fitting curve for Imm
-0.27 . 65 o
T T T T T T T T T T T T T T T T T 0.05 T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

L/d
* Disk-like projectile: lower or backward axial

moving velocity.
* Sphere and rod-like projectile: higher projectile
fragments velocity.
* Thicker sheet :

leading-edge velocity.

little effect on the projectile

* Nearly linear relationship between Vpf and V,,.

Shengyu Zou

L/
* Sphere-like projectile: lower velocity of V.

* Disk-like and rod-like projectile: higher velocity
of V.

* Linear relationship between V,; / ¥,
where L/d < 1.

* Exponential relationship between V,;/ V,, and L/d
where L/d > 1.

and L/d

L/d
* Disk-like projectile: lower expanding velocity.
* Sphere and rod-like projectile: higher expanding velocity.
* Thicker sheet : lower expanding velocity.

* Nonlinear relationship between V, and V,,_

Ref: S. Zou, L. Olivieri a, Z. Ma ¢, C. Giacomuzzo a,b, A. Francesconi. 72nd IAC, Oct. 2021.
FRAGMENTATION MODELS FOR HYPERVELOCITY IMPACT

8-25



3

1222-2022

UNIVERSITA
DEGLI STUDI
DI PADOVA

O Models for Debris-cloud velocities
» Semi-empirical dimensionless model
Vdc_C (t)a ANIAY
Vp N d c d
» Calibration and validation with test data

v’ Validation for front velocity of spherical impact

17
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4
(V,/c) (t/d) "a

Properties and models for debris-cloud velocities

v' Calibrated parameters table

Parameters Model for V; Model for V,

0.3953
0.3623
-0.2355

0.7053
0.1761
-0.1391

v’ Validation for expanding velocity of spherical impact

0.7 > sphere d=3. 5mm v
’ © sphere d=4.0mm
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: . Vo (to)>?
Maiden CJ, McMillan — =24 -—- (—) + 0.9
AR. AIAAJ 1964;2(11). c \d
Shape effect
consideration f (L/ d) i
) Dy o (0\23 (L
Model-1:  22=24.2.(2)"". f(2)+09
a L
Where f (é) =kq (é) e*za
f2(L/d)
Dy _ v t L
Model-2: 22 =24-(%).(5) i (2) +09

)
Where  f; (g) =q (é)qz . e"3'§

Model-3:

Ref: S. Zou, L. Olivieri a, Z. Ma ¢, C. Giacomuzzo a,b, A. Francesconi. 72nd IAC, Oct. 2021.
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(1)

(2) )

v Comparisons and
Validation

Properties and models for perforation hole

= = = = Model-2 prediction for 7km/s-2mm
Model-3 prediction for 7km/s-2mm
®  Simu data of t=2mm&v=7km/s
- = = = Model-2 prediction for 5km/s-1mm
Model-3 prediction for 5km/s-1mm
Simu data of t=2mm&v=7km/s
= = = Model-2 prediction for 3km/s-1mm
Model-3 prediction for 3km/s-1mm
*  Simu data of t=2mm&v=7km/s
Model-1 prediction for 7km/s-2mm
————— Model-1 prediction for 3km/s-1mm
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O The effect of projectile shape L/d

M,  was normalized by dividing it by the projectile mass Mp.
Vi r Was normalized by dividing it by the impact velocity Vp.

M,y /Mp vs L/d Vig/Vp vs L/d
LO9 e meeceee=f o ____ é ______ 9
Lo s % --" #---"""T 0 -% """""""" * M, is dependent on projectile shape, target thickness and
°0 & BT & 2T T BT T ® ] ‘: g' Z,oé & Lo .- §. """ impact velocity, while V. appears to depend on projectile
<> 7 !, 4 ‘ o - o = = . . .
, e £=0. 5mm-v=Tkm/s
0.8 pe 0.8 P, B> ",, P POl shape and target thickness, but only slightly depend on impact
' e, L7 ® t=2mm—v=Tkm/s Velocity.
INKd *’ ’g @ t=3mm-v=Tkm/s
0.6 / o 1 D A =0, 5mnv=5kn/s
= p = A *© ﬁ t:émm*v:gtmﬁs * Disk-like projectiles (L/d < 1) are easiest to be fragmented,
~ |23 a t=2mm—v=okm/s
ﬁ ! =067 > ,t # A t=3mm-v=bkn/s and have relative lower velocity of the large fragment.
0.4 7 © M, /M,-3km/s-lmm bumper ' {},' »  t=0. 5mm—v=3km/s
& M, /M,-5km/s-1mm bumper 1 *,’ ! E t=émm*v=§tm§s
R _ t=2mm-v=3km/s . . .
f MMy T ‘;“‘“‘;:’ *', B (oammv=3kn/s * Rod-like projectiles are usually less fragmented and less
0.2 1/ M-Skm/s-2mm bumper 4 ' = = = Fitted model . . . i
A A Myg/MyTkams-2mm bumper 0.4 ! Feee e impeded by thin plate target during hypervelocity impacts.
== =Fitting curve for Imm bumper &
= Fitting curve for 2mm bumper|
0.0 ®
T T T T T T 0~ 2 T T T T T
0 1 2 3 4 5 0 1 9 3 A 5
L L/d
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O The effect of impact velocity

I » Geometrical scaling investigation

M, (/Mp vs V, Vi/Vpvs ¥,
1.0 1.0 * V ris geometrical scaling for both spherical and non-spherical projectiles, while M|
i spl;ere g:?rgm, %%0622 —O— Sphere d=5mm, t/L=0. 2 . t trical li but is si d dent
sphere d=10mn, t/d=0. —A— Cylinder d=5m, L/d=1, t/L=0.2 is not geometrical scaling but is size-dependent.
o Sl L 02 o G linder 10 1/a, 16,2 ’ ® P
0.9
a B v % e\P v\
0ed A M moc-(i) (3) .f(cv_p) ﬁocc-(—) (_) (_p)
£ = Mp a L d p a’/ AL €
(r, ~
=) 0.8
=0. 4 =
. 0.7 » Fragmentation threshold-velocity investigation
_____ 129
007 ! J ! ! ! 0.6 ! J T T ! = spherical projecitle v F h
2 3 4 5 6 7 2 3 4 5 6 7 . . . N
Velocity (km/s) Velocity (kn/s) cylindrical projectile or Sp ere
07 ~@— Cylinder d=10mm, L/d=1, t/L=0.2 —=— Cylinder d=2. 5mm, L/d=2, t/L=0. 2 9 t —-0.333 t
—©- Cylinder d=5mm, L/d=1, t/1=0. 2 1.0 —0= Cylinder d=5mm, L/d=2, {/L=0.2 1.436km/s - (—) for - < 0.16
—#— Cylinder d=5mm,L/d=2,t/1=0.2 —&— Cylinder d=5mm, L/d=1, t/L=0.2 R Vie = da da
0.8 =A= Cylinder d=2.5mm, L/d=2, t/1=0.2 —A = Cylinder d=10mm, L/d=1, t/1=0.2 %) 1 lf t
V/ﬂ_______ly-———u 5 2.6 km/s for - =20.16
, ~ 6-
. b — — m b
o = i .
v' For short-cylinder
7 £\—0.55 ¢
034km/s-(3)  for 2<01
if = £10.08 "
04 , , , , , 1.45km/s - (E) for -> 0.1
0. 00 0. 05 0.10 0.15 0.20 0.25
I e e I v
Velocity (km/s) Velocity (km/s)
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O The effect of target thickness ratio t/L
Vie/Vp vs /L

I » Investigation on optimum bumper-thickness-ratio

projectile (L/d <1) with equivalent initial mass.

* a sphere and a short-cylinder (L/d >1) have a lower optimum t/L ratio than a disk-like

M, /Mp vs t/L
107 ®m f1.0-3kn/
0= 1. 0-3kn/s S
084 % —— r1.0-5kn/s LN 2 Hoses
=A= £1.0-Tkn/s "\‘_ = = Fitting curve
0.8+ "~\_~ y =-0.671x+0.986
: Ttsi. A . . . . e .
0.6 e * for designing a more conservative shield, it is necessary to carry out the evaluation tests
2 20 4 by using disk-like projectiles rather than spheres or short cylinders.
550,47 = t
Q
0.8 7
0.2 A\ O\O\o o 0.4 —O— 3km/s
—&— 5km/s
0.0+ S 2 % —— Tkm/s
T T T T T T T T 0.2 T T T T T T 0.6 -
0.1 02 03 04 05 06 07 0.8 0.1 0.2 0.3 0.4 0.5 0.6 )
t/L tL
1.0 7 1.0 ————
—o— v=3km/s ¢ Rl TR .
y=-0332xtL011 77T 4 =
0.8 + 0.4+
0.8
B 3.0 3km;s
. ® f3.0-5kn/s
0.6 A £3.0-Tkn/s
EQ >Q [ == Fitting curve
“ T2 0.6
="0.44 = 0.2 -
0.2
0.4
T T T T T
0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
T T T T 0.2 T T T T T T L/d
0.2 0.3 0.4 0. 05 0. 10 0.15 0. 20 0.25 0. 30
t/L
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N0 ¢ wassto - Properties and models for large central fragment

AN N I DI PADOVA

0 Dimensional analysis for modellin
o 8 v' The units and dimensions of the variables

Based on Pi theorem, three fundamental variables: mass (1), length (L), time (7). Variables
t, L d

» The mass of the large central fragment

Myg = f(t,L,d,Vp,S, Zp/Zt)

Y

Nondimensionalization l n
|
Mg pp - sz"y [t L Zp » The velocity of the large central fragment
ppLd?-S-d=*=y f L'd’ Zt
Vg =f(t,d, LK)
M _ 477 ot L 7p My cxey o —2by (EYE (L\P
M, ppVp> Y f <L'd’ Zt) W =C-d™- b ) (Z) ) (E) I Nondimensionalization l
The model for large-central-fragment mass l VK t L
~ for Vp < Vi | avr / (Z'E) The model for large-central-fragment
1_MLF_ g0 Vo = Vie\" (t\f (L) . v - velocity
1) @) (@) s PN By
b l V=C-d1+x-(£) (E) —_— N (L v,
~ 1 for Vp > Vet F L d szc.(z) A7) 7

1
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O The model for large-central-fragment mass

» Model formulation

~ 0 for Vp < Vi¢
— Ve ® B 14
__LF w(Vp = Vit (E) L <V <
Mp cd < Vif ) d d for Vlf = Vp S ch
~ 1 for Vp > Vis

» Calibration and validation

Properties and models for large central fragment

v' Calibrated parameters table

Parameters

| 7 Projectile type

Cylinder-L/d=2

Sphere Cylinder-L/d=1
C 4.471 mm0-561 4.072 mm0794 4.072 mm0-794
-0.561 -0.794 -0.794
| o] 0.675 0.937 0.577
| B 0.316 0.331 0331
0 -1.003 -1.003

-&- Cylinder d=5mm, L/d=1, t/L=0.2
@ - Cylinder d=10mm, L/d=1, t/L=0. 2
--@ - Cylinder d=2.5mm,L/d=2, t/1=0.2

-- Cylinder d=5mm, L/d=2, t/L=0.2
Model prediction
Model prediction

1.04
1.0 ¥
0.8 - 0.8+
--O- sphere d=b5mm, t/d=0.2
] --@ - sphere d=10mm, t/d=0. 2 20.64 /
0.6 --A - sphere d=10mm, t/d=0. 1 = 4 "' .
A sphere d=5mm, t/d=0.1 = <& Cylinder d=5mm, L/d=1, t/L=0. 2
Model prediction < ) : Cylinder d=10mm, L/d=1, t/L=0.2
P ] -~ Cylinder d=5mm,L/d=1, t/L=0.1
0.4 Model prediction — 0.4 o/ A Cylinder d=10mm, L/d=1, t/1=0. 1
Model prediction
Model prediction
0.2 / o.24 /7
0.0 |" T T T 1 0.0 T T T T T T T 1
0.0 0.5 1.0 1.5 2.0 0 1 2 3 4 5

(Vp_vif) MV
Shengyu Zou

(Vp-Vif) /Vif
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O The model for large-central-fragment velocity

v' Calibrated parameters table

Projectile type

» Model formulation
Parameters Cylinder or ellipsoid
o , , Sphere N N
VLE _ o (Vp) (t)ﬁ (L)y L/d=0.2~0.75 L/d=1~2
Vo ¢t L d 0.7306 0.7338 0.7202
0.0375 0.0895 0.0259
-0.1086 -0.1080 -0.1132
» Calibration and validation 0 0.0671 0.1016
1.0 7 1.0
1.0
] oA 0.99 T A BT
--{>- sphere d=5mm, t/d=0. 1 S S
= --@ - sphere d=5mm, t/d=0. 2 o @ Cylinder d=2.5mn, L/d=2, t/L=0.2 a <A+ Cylinder d=5mm, L/d=0. 5, t/L=0. 2
< --@ - sphere d=10mm, t/d=0.1| < -0 Cylinder d=bmm, L/d=2, t/L=0. 2 Z --A-- Cylinder d=10mm, L/d=0. 5, t/L=0.2
= 0.8 ©- sphere d=10mm, t/d=0.2| “5 0.8 --A- Cylinder d=5mm,L/d=1, t/1=0.2 0.8 Model prediction
>\ Model prediction >\ A Cylinder d=10mm, L/d=1, t/L=0. 2 o
— F24 Model prediction
0.7 0.7 0.7
0.6 T T T T T T T T T 0.6 T T T T T T T T T T 0.6 T T T T T T
2 3 4 5 6 7 9 3 4 5 6 7 2 3 1 5 6 7
Impact velocity (km/s) Velocity (km/s) Velocity (km/s)
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8 Ll o St Experimental study on hypervelocity impact debris-cloud
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O Debris cloud morphology
» Sphere impact

* an external bubble and an internal structure including front cap, central element
and rear element.
* a hemispherical shell of fragments spalling off the rear side of the projectile .

Inclined front-cone

s

» Short-cylinder impact

The largest fragment

* a spike-like front cone at the leading edge with velocity of up to 4% greater than
impact velocity. /
* the head point of the front cone is coincident with the direction of the cylinder

The spike-like
front cone

axis, and is dependent on the cylinder’s impact inclination.

» Disk impact

* consist of an external bubble, an internal cone and a front cone with its point o ieEaES Sragvn

Columnar structure

aligned with the inclined direction of the disk axis.
* there is a long columnar structure in the middle, a fast-moving head at about
3% higher than Vp, and a very slow-moving end at only 6% of Vp.

* the columnar structure doesn’t show any tendency to disperse.
Shengyu Zou FRAGMENTATION MODELS FOR HYPERVELOCITY IMPACT 17-25
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8 5 oo EXperimental study on backwall damage response

O The inclination effect on backwall damage

v’ Backwall images from experiments

o T07 "Satve e LN:
fztsuﬁ ‘.-3 “%

X 47.5% inclined

7 Ve 600 b/ @
: 2-“-.! d1=2.60 vem
f 52.5% inclined

R 3 perforatsd bt
" ~41° inclined ~47.5° inclined 2

, TO8 v: o513 M o
‘|'Z.‘| mm  dhF 2omem
62.5° inclined

TI0  v:E1ekds @
= ‘1'1-"."' ‘tSIthﬂ

73.5% inclined

»

eackwall
Not perforated

Nt ot wint
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Shengyu Zou

v' Analytic model for critical inclined angel

ino BC Up
Sin @er =~ = U
kv
US = Ct + — p

For Al-Al impact at about 6km/s, it is more
damaging situation when the inclination is
between 40° to 50°

30°inclined

45° inclined

60° inclined
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nroon EXperimental study on backwall damage response

O Ballistic limit equation for Whipple shields
Examination and comparison of two BLE models: Christ-BLE and EMI-BLE.

WS-1: t,-S-t,,: Imm-80mm-2mm WS-2: t, -S-t,,: Imm-129mm-7mm
6 T T T T T T 20 : : ! — :
[ Christiansen-BLE & EMI-BLE for Lid=1 weeeees Christiansen BLE
L @ Nofailure case of sphere 18F - - - - EMI BLE for projectiles of L/d=3/2 ||
O Failure case of sphere ‘I T EMI BLE for projectiles of L/d=1/3
¢ Failure case of cylinder L/d=1 4 O Failure for sphere impact
5F ¢  No failure case of cylinder L/d=1 16 i @® No failure for sphere impact
[ - = = = Fitted BLE curve for the spherical-test results [> Failure for disk impact L/d=1/3
o 14 | O Failure for short-cylinder L/d=3/2 H
4r S,
E = 12 i
E £
= =
s I 8 10 .
3 ————
8l = P ]
2F i I S iy ey 1
o ) st s 5RO st B e S -
1 1 1 1 1 1 1 1 1 1 1 3 2 1 1 1 1 L
0 1 2 3 4 5 6 [ 8 9 10 11 12 0 2 4 6 8 10 12
Impact velocity (km/s) Impact velocity (km/s)

* Christ-BLE is up to 2 times more conservative for evaluating the performance of spherical impact against WS-1, but it is dangerous when
used for non-spherical impact.

« EMI-BLE is much more conservative than Christ-BLE, and could be applied for non-spherical impacts.

* Both of the two BLEs could not be applied conservatively for the impacts with inclined cylinder .
Shengyu Zou FRAGMENTATION MODELS FOR HYPERVELOCITY IMPACT 19-25



12222022 UNIVERSITA

OO B4 DECLL STUD Fragments recovery experiment

O Fragments recovery and analysis

v" Fragments collected from spherical impact
v’ Before the impact

Bumper Wax recovery material

v Fragments recovery procedures

Jemm s Fragments extraction
w il

Projectile

[
aulase
e

400

Melt the wax-panels by
cooking with induction cooker

179mm 120mm - #
v’ After the impact

Heat the fragments packages
with a thermal drier

1mm
L

Vie
>

Classify the fragments
with a serial of sieves

Measure and count
the fragments

Comparisons of large fragments for impacts with different shaped projectiles PR . ’
c s C e . . i LI -
* The disk-like projectile is easiest to be fragmented, sphere is harder to be fragmented - = Q
than short-cylinder . Windell/d=2). - Diskilio—tie) T Cyirlics s B
* Impact of short-cylinder with large inclination undergoes a complete fragmentation like a

disk projectile . s okl
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s Fragments recovery experiment

O Fragments distribution and model

» A scaling model developed for impact with shaped projectiles

» For sphere impact

Nc(a) _AleBla/meaX+A2332a/meaX

Nashida Model: vE-(t/L)B-L/a)Y

M. Nishida, et al. 2017
Parameters|a | |y |4, | B | 4 | B, |

1.5 _ -1 .6a/d —4.3a/d
N¢(a)/V=> = 50.7e +2.9e DM 1.5 -3.65 -1.75 1.332 -70.657 0.076 -16.975

80 ® sphere—d=8mm
@ cylinder-1/d=3/2 inclined 3.5degs 0.0150 ® sphere—d=8mm
v disk-L/d=1/3 inclined 9.6degs | @ cylinder-L/d=3/2 inclined 3.5degs
o A cylinder-L/d=2 inclined 79degs v disk-L/d=1/3 inclined 9. 6degs
= = Fit for sphere | e : :
\ — = Fit for disk-1/d=1/3 < 0.0125 7 Model prediction
60 A\ = = Fit for cylinder-L/d=3/2 Q
IR — — Fit for cylinder-L/d=2 N
\\ Nashida model for sphere —
] % 0.0100
%\ \ \\ Q
\ \A\\. ‘\S
Ago S
= e No(@)/ V15 = 151.6e-1060/d 4 15,0340/ = 0.0075
z §
@) z
E 0. 0050
20 <
0. 0025
0 0. 0000 a r
T T T T T T T T T T T T T T ] r— r+ 1+ 1 1 - 1 1 T T T 1
1 2 3 4 5 6 7 8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Lmax (mm) Lfmax/ meax
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DI PADOVA

*  Characterizing projectile shape effect on debris cloud geometry and debris cloud motions:

- Flat disk-like projectile produces debris cloud with columnar geometry, in which the expansion velocity of debris cloud is
lower, while the leading-edge velocity is relatively higher; the debris cloud produced by a sphere-like projectile has a higher
expansion velocity but a lower leading-edge velocity, that means the debris cloud has a higher level of fragments diffusion; the
fragmentation rate caused by impacting with a rod-like projectile is significantly insufficient, thus the total fragments
population is significantly small, and the debris cloud includes a primary fragment with both mass and velocity close to those
of projectile before collision.

*  Properties study and model development for debris-cloud velocities:

- Debris cloud structure for different projectile shape were studied from the debris-cloud morphology based on simulation and
experiments. The debris-cloud velocities were characterized and semi-empirical models for spherical impact have been
developed.

*  Properties study and model development for perforation hole :

- Based on simulation data, the sphere or short-cylinder is strongest in the enlargement capability of the perforation hole, while
the rod-like projectile takes lower capability, and the flat disk-like projectile takes the lowest capability. Three semi-empirical
models were proposed and compared.

*  Properties study and model development for large central fragment:

- The effects of shape ratio, target thickness ratio and impact velocity on the mass and the velocity of large central fragment were
characterized, and semi-empirical models for the mass and the velocity of large central fragment were developed based on

dimensional analysis, and were calibrated and validated with simulation data.
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Investigated on fragmentation threshold velocity :

- There existed two threshold-velocities for judging the fragmentation intensity, one is the threshold-velocity of initiation
fragmentation Vi, and another is the threshold-velocity of catastrophic fragmentation V. Disk-like projectile has the lowest
fragmentation threshold velocity, rod-like projectile has the largest fragmentation threshold velocity, and sphere or short-
cylinder have moderate fragmentation threshold velocity. Short cylinder can be fragmented more easily than sphere at fixed #/d
ratio.

Investigated on optimum bumper-to-projectile thickness ratio:

- A sphere and a short-cylinder (L/d >1) have a lower optimum #/L ratio than a disk-like projectile (L/d <1). Such that it appears
to be not conservative when sphere or short-cylinder is used to evaluate the effectiveness of a shield against space debris
impacts. Thus for designing a more conservative shield, it is necessary to carry out the evaluation tests by using disk-like
projectiles rather than spheres or short cylinders.

Investigated on geometrical scaling of large-central-fragment:

- The velocity of the large central fragment is geometrical scaling for both spherical and non-spherical projectiles, while the mass
of the large central fragment is not geometrical scaling but is size-dependent.

Investigated on the inclination effect on cylindrical impact :

- The work of simulation, experiment and analytic model had performed. The investigation indicates: for inclined impact, the
most damaged area on rear wall was commonly crescent-shaped, and biased away the central craters. For Al-to-Al impact, there
is a more damaging situation when the inclination is between 40° to 50°.
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Investigated on BLE models for damage evaluation:

- Christ-BLE 1is up to 2 times more conservative in spherical impact for

evaluating the performance Whipple shield-1 employed in our tests, but
it is dangerous when used for non-spherical impact. Another
observation is that Christ-BLE is not applicable for evaluating the
shielding configuration with lower t/d ratio under the impact velocity
higher than 6km/s; It is observed that it is rather conservative with
respective to Christ-BLE, and it is applicable for evaluating the non-
spherical impacts against Whipple shield-2, but it is not applicable for
an inclined impact of right-cylinder.

Investigated on fragments distribution:

- The projectile shape as well as the impact inclination are effective on

fragments distribution. The mass of the largest-fragment for the
spherical impact is 4 times larger than that of the short-cylinder
(L/d=3/2) impact, and is 10 times larger than that of the disk(L/d=1/3).
This indicates the disk-like projectile is easiest to be fragmented, and a
short-cylinder is easier to be fragmented than a sphere. An scaling
model on the fragments distribution has been developed.

Educational activities during PhD study:

Shengyu Zou

Conclusions & training activity

EDUCATIONAL ACTIVITIES ACTIVATED BY THE STMS PHD COURSE

date 15 Dec. 2022):

Exam
Expected Frequency
interdisciplinary Module/Activity Lecturer (YES/NO  pate of exam Attained credits
credits (ves/no) 1
Prof. G.Naletto
[space optics and detectors - a vES Yes 03-04-2020 a
Prof. M.-G.Pefzzo
" "
[Exploring the sofar system and its environment :ﬂ:‘:!f:em o fe a YES YES 2605020 a
. - Prof. U.Galvanetio
Mechanical and thermal properties of material for aerospace constructions 4 YES No exam - 4
prof. M.Zaccariono
Prof. A Francescon
[space systems and their control 4 YES YES 25-07-2020 4
Prof. E.Lorenzin
nt technigues s, PC based, visual and thermalProf. M.Pentie g gk s i
image analysis based Prof. G.Ross - :
jwriting a Scentific Paper / Research Project Proposal Prof.G. Naletto 2 YES - - 0.4
introduction to Computational Fiuid Dynamics Prof. F. Picano 2 YES YES - 20
composite materials: Modeling, Processing, and Characterization (AIDAAPrOf. N. Zobeiry,
H VES No exam 0.8
course) Prof. M. Petrolo
4 overview on space debris protection best practces (AIDAA Coutse) Post Dr. L Ofiveri 1 YES No exam 0.2
Structure dynamics: theory and practices in the space industy [AIDAAPrOf. G. Kerschen
15 YES No exam 03
course) Prof. G Aglet eta
Remote sensing instruments for atmospheric transparency: theos
s 2 RTeREY Vo prof. Dero - Gaug 20 vES vES 04-05-2020 20
nstruments and methods
Durabifty and Ageing Organic Matrix Composites for Aircraft Appications  Prof. Marco Gigliott 20 VES YES 20
safty course: GENERAL HEALTH AND SAFETY IN THE WORKPLACE E-gaming and Oniine test 078 YES YeS 0107 -2020 0.78
Pamy
PhD Engiish Course Prof. Giian davies VES e
v
Exam
Expected Frequency
jcurriculum oriented seminars Lecturer (ves/NO  Date of exam Attained credits
credits (VES/NO) o
Introduction  to Quantum Technologies prof. vallone 0.08 YES NO 25-02-2020 0.08
analysis of Complex Dynamics with Chaos Indicators Prof. Guzzo 0.08 YES NO 0.08
vuv optical anisotropy of few layers graphene: possible appication for
space
; Prof. Zuppela 04 YES YES 28-05-2020 oa
[FLY-Spec: UV-VIS-NIR reflectometry and laserinduced breakdown
[spectroscopy
advanced Computational Modefing of Multiphase Prof. F. Picana 04 VES YES 11-5-2020 o4
[From Art 1o Science: The Flower Constelations Prof. Mortari 0.04 YES NO 28012021 0.04
computational modeling of strain localisation and crack initiation and
2 Prof. L sanavia o4 VES YES 01-02-2021 oa
propagation in mult-phase porous materials
Space electric propuision Prof. Magarotio 0.08 YES YES 18-6-2021 0.08
characterisation of fracture resistance of interfaces in mode |,mode lland
Prof. G. Affano 0.08 VES - 18-01-2022 0.08
Imxed mode
prof. P. 5. Costa
Recent advances in numercal approach for muttiphase fiows 0.08 YES 21022022 o.08
prof. F. Picana
computational approaches for fluid-structure interaction with fracturing Prof. F.D. Barba 0.08 YES - 21-02-2022 o.08
very low Earth Orbit Satelites for Earth Observations Prof. F. Barato o4 YES YES 21022022 oa
[Operating a detector in space for 10 years: the case of Fermi LAT course prof. R. Rando 0.4 YES YES 24-02-2022 04
[Past and future imaging of the surface of Mars Prof. N. Thomas 0.08 YES - 08-03-2022 0.08
Dispersed Muitiphase Fiows: Physics and Modeling prof. F. Picano 0.08 vES 22-03-2022 0.08
rethers for space appications: current developments and future
Prof. E. Lorenzin 0.08 YES - 27-04- 2022 0.08
perspectives
[The OSIRIS-REX sample return mission: 3 joumey 1o the origin of the Solar
s ney Prof. M. Pajo's 04 YES Yes 09-05- 2022 0a
sy stem
[OTHER EDUCATIONAL ACTIVITIES
Duration of  Expected Frequency Exam Attained
[Tide of the activity (Date/Period/Universi! Lecturer Date of exam
(e s activity credits (ves/no) [ves/no) credits
[admission presentation VES os YES NO 21022020 0s
[First year admission presentation YES 05 YES YES 06-11-2020 0.5
second year admission presentation VES 0s VES YES 11-01-2022 0.5
Third year admission presentation YES os YES YES 15-12-2022 0.5
Dissertation defense presentation VES os
conferences 1 time: Intemational Astronautcs Congress 2021 YES 10 YES YES 10
5 . : Total of credits attained in educational activities (at
Total of expected ECTS credits attainable in educational activities (>30): 31.74 3124
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