

Studies on photosynthetic organisms as a tool for improving the success of future space missions

Mariano Battistuzzi, 10/10/2017

Life as we know it depends on the presence of water and oxygen

Oxygenic Photosynthesis uses only the VISIBLE light Photosynthetically Active Radiation (PAR)

The presence of water and oxygen produces atmospheric biosignatures observable by remote sensing

Aim of the Project

Biological Questions:

Could Oxygenic Photosynthetic organisms survive under Mtype star light spectra?

Could Oxygenic photosynthesis be performed and which impact would it have on the atmosphere of a planet?

An atmospheric biosignature could be generated by the activity of these organisms?

What to use? Cyanobacteria!

Photosynthetic Microorganisms with great methabolic and adaptive plasticity

Cyanobacteria first to evolve the Oxygenic photosynthesis

Survived 6 months to UV and cosmic rays, vacuum, and extreme temperature variations in a box outside the International Space Station

Photoacclimation to 720 nm FR light

Gan et al., 2014 *Science* Gan and Bryant., 2015

Instruments: Star Light Simulator

Radiation Source

365 – 940 nm

stituto di Fotonica e Nanotecnologie

Spectrograph

Instruments: Atmosphere Simulator Chamber

- Pressure
- Temperature
- Atmospheric Composition

NOIZAN

IFN

-otonica e Nanotecnologie

Tunable Diode Laser Absorption Spectroscopy (TDLAS)

Viability and cell growth

Optical Microscope

Chlorogloeopsis frischii PCC 6912

Differencial gene expression

Pigment's synthesis and content

Biochemical and biophysical characteristics of the photosynthetic apparatus

Fig. 1 Typical traces of chlorophyll fluorescence quenching analysis in land plants (\mathbf{A}) and cyanobacteria (\mathbf{B}). Measurements are conducted in four phases: dark-acclimated phase (a), light-acclimated phase (b), dark-recovery phase (c), and DCMU phase (d)

Ogawa, Misumi and Sonoike, 2017

Expected Results

1 – Gain of knowledge on biological responses to environmental parameters resembling those of extrasolar planets orbiting M-type stars

2 – Production of a Database of atmospheric biosignatures useful for future space mission observations

3 – Evaluation of the suitability of the tested organisms for long-term missions on ISS or to the Moon/Mars

Thanks For The Attention

