

Enrico Tessarolo, STASA XXX PhD Course

Optical components in space environments: fabrication, characterization and performance degradation

Supervisor: M. G. Pelizzo

Co-supervisor: P. Zuppella

Outline

- Introduction on space environment considered and potential damages induced on optical coatings
- Experiment layout
- Damage results in single layer coatings
- Damage results in bilayers coatings
- Conclusion and next steps

Solar Environment and the solar wind particles

Ulysess/swoops 1998	Slow solar wind		
500 - Marine	Species	Energy (avg)	Composition %
	р	1 keV	95
	He+	4 keV	5
	Fast solar wind		
The second	р	4 keV	95
500- attend	He+	16 keV	5
Speed [km s ⁻¹]			

Solar wind speed distribution:

Slow speed around ecliptic ~ 400 km/sec

Fast speed around poles ~800 km/sec

SRIM simulations in SiO_2 and TiO_2 single layers

He+ 300 nm SiO₂ layer

He+ 300 nm TiO₂ layer

SRIM simulations in a SiO₂/Al bi-layer

Potential damages in optical coatings

- a) When the energy is very low, ions highly concentrate close to the surface.
 Depending on irradiation doses (and fluxes) the following damages can be observed:
 - Optical properties changes (doping)
 - Morphological changes (superficial roughness)
 - Delamination in case of multilayers (blistering)
 - Enhanced intermixing at interfaces
- b) As the energy increases, the ions spread in a larger portion of the film
 - The same damages occurs at higher doses
- c) As the energy increases further, the ions overcome the coating

Experimental layout

Sample Name	Ion Energy	Flux	Dose	Session Code	
	He+	(cm ⁻² s ⁻¹)	(cm-2)		
Au	4 keV	$L: 1.6 \cdot 10^{12}$	L:4·10 ¹⁶	4LL	
	4 keV	$H: 1.6 \cdot 10^{13}$	L: 4·10 ¹⁶	4HL	
	4 keV	$H: 1.6 \cdot 10^{13}$	$L: 4.10^{16}$	4HL	
SiO ₂ (20)/Al	4 keV	$L: 1.6 \cdot 10^{12}$	L: 4·10 ¹⁶	4LL	
	4 keV	$H: 1.6 \cdot 10^{13}$	L: 4·10 ¹⁶	4HL	
SiO ₂ (40)/Al	4 keV	$L: 1.6 \cdot 10^{12}$	L: 4·10 ¹⁶	4LL	
	4 keV	$H: 1.6 \cdot 10^{13}$	$L: 4.10^{16}$	4HL	
SiO ₂ (140)/Al	16 keV	$H: 1.6 \cdot 10^{13}$	$H: 4.10^{17}$	16HH	
TiO ₂ (30)/Al	4 keV	$L: 1.6 \cdot 10^{12}$	L: 4·10 ¹⁶	4LL	
	4 keV	$H: 1.6 \cdot 10^{13}$	$L: 4.10^{16}$	4HL	
TiO ₂ (95)/Al	16 keV	H : $1.6 \cdot 10^{13}$	H : 4·10 ¹⁷	16HH	

Ions implantation facility

Ion Beam Center at the Helmholtz-Zentrum Dresden-Rossendorf Ions delivery with energies in the range 200 eV - tens MeV

Damage results in single layer coatings (1)

Damage results in bi-layer coatings - role of flux

- Similar behaviour of the reflectance drops
- The 4LL irradiated samples have a higher reflection drop than 4HL irradiated samples → given a dose, low fluxes induce more damage

Damage results in bi-layer coatings - role of flux (2)

 $\Delta \mathbf{R} = (R_{ref} - R_{irradiated})/R_{ref}$

- ΔR depends on the flux;
- ΔR depends on the capping layer thickness;
- Varying flux, the ΔR drop in sample SiO₂(40)/Al is the same as in SiO₂(20)/Al.

Damage results in bi-layer coatings – role of capping layer material

IS

G.COLOMBO

S

Damage results in bi-layer coatings – role of ions energy

- Irradiation session with 16 keV He ions show a dramatic reflectance drop!
- The TiO₂(95)/Al sample show also a different reflectance behaviour

Damage results in Au thin film – HR-SEM

Comparison between surface SEM images of Au irradiated with 4 keV He+ ions The material nanostructure is completely modified by the ion irradiation:

- Surface amorphization,
- Pours structure with consequent reduced density.

Damage results in bi-layer coatings – surface morphology (1)

No evident change of surface roughness for low fluences

Damage results in bi-layer coatings – surface morphology (2)

Evident change of surface roughness for high fluences

Ph.D. Outcomes

- The effects of ion irradiation on thin film, and thin film structures has been studied along this 3-years Ph.D. project;
- Irradiation key-factor has been studied: fluence, flux, ion energy and type;
- Guidelines for space qualifications of optical components has been determined;
- Different surface and bulk analysis (AFM, XRR, SEM, TEM) has allowed connect optical performance degradation to surface/bulk modifications.
- An Effective medium model has been proposed to predict the optical performance degradation of irradiated optics

Ph.D. Outcomes: publications

- 1. Pelizzo, M. G., Corso, A. J., Tessarolo, E., Martucci, A., Donazzan, A., Böttger, R., ... & Napolitani, E. (2017). Qualification tests of optical coatings in space environment. In Metrology for AeroSpace (MetroAeroSpace), 2017 IEEE International Workshop on (pp. 228-233). IEEE.
- 2. Tessarolo, E., Corso, A. J., Böttger, R., Martucci, A., & Pelizzo, M. G. (2017). Ions irradiation on bi-layer coatings. In Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems (Vol. 10401, p. 104010A). International Society for Optics and Photonics.
- 3. Corso, A. J., Tessarolo, E., Martucci, A., & Pelizzo, M. (2017). Systematic investigation of the optical coatings damages induced in harsh space environment. In Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems (Vol. 10401, p. 104010B). International Society for Optics and Photonics.
- 4. Pelizzo, M. G., Corso, A. J., Tessarolo, E., Zuppella, P., Böttger, R., Huebner, R., ... & Foggetta, L. (2016). Optical components in harsh space environment. In Planetary Defense and Space Environment Applications (Vol. 9981, p. 99810G). International Society for Optics and Photonics.
- 5. Zuccon, S., Napolitani, E., Tessarolo, E., Zuppella, P., Corso, A. J., Gerlin, F., ... & Pelizzo, M. G. (2015). Effects of helium ion bombardment on metallic gold and iridium thin films. Optical Materials Express, 5(1), 176-187.

Thank you for you attention!