Advanced plasma sources for space applications

Paola De Carlo

CISAS - Università degli studi di Padova Corso di dottorato in Scienze Tecnologie e Misure Spaziali Curriculum: STASA

October 20th, 2017

A T > 1

1 / 26

October 20th, 2017

• • • • • • • • •

Outline

Framework

- 2 Motivation, and objectives
- Oumerical Tools
 - Physical Assessment
- Iasma Antenna Design
- 6 Source Realization, and Testing
 - Conclusions

イロト イ団ト イヨト イヨト

Plasma exhibits complex Electromagnetic (EM) wave phenomena. It can be exploited in a broad range of advanced application:

 $\label{eq:Plasma} \begin{array}{l} \mbox{Plasma exhibits complex Electromagnetic (EM) wave phenomena.} \\ \mbox{It can be exploited in a broad range of advanced application:} \end{array}$

Space Propulsion:

Plasma Thrusters

Space Communication:

Gaseous Plasma Antennas

Plasma propulsion systems

Use electric power to ionize the propellant and impart kinetic energy to the plasma.

Critical issues:

- Limited lifetime
- Need for an external cathode
- Low power density.

Plasma propulsion systems

Use electric power to ionize the propellant and impart kinetic energy to the plasma.

Critical issues:

- Limited lifetime
- Need for an external cathode
- Low power density.

Helicon Plasma Thruster (HPT)

(日) (同) (日) (日)

October 20th, 2017 4 / 26

Introduction

Framework

Gaseous Plasma Antennas (GPAs)

Devices relying on an ionized gas to radiate EM waves.

Feautures:

- Electrically reconfigurable;
- Low RCS, and thermal noise;
- Minimize co-site interference and signal degradation;
- Virtually *transparent* above the plasma frequency and *invisible* once turned off.

< ⊢□

Motivation, and Objectives

Although different in shape, fields of applications, and working conditions, GPAs and HPTs share:

Motivation, and Objectives

Although different in shape, fields of applications, and working conditions, GPAs and HPTs share:

October 20th, 2017

5 / 26

Motivation, and Objectives

Objectives

- Physical investigation into plasma generation, charged particle transport in a magnetized plasma, and wave-plasma coupling mechanism
- Clarify the role of the antenna in the source of HPTs, and the behavior of GPAs taking into account realistic excitation circuit and plasma transport
- Coupling of the EM solution with the plasma transport
- Design, and development of innovative plasma sources to be exploited as a GPA.

Global Model

Plasma transport within a plasma source modeled by a 0-D fluid model.

Input

- Source Geometry: R, L;
- Neutral pressure p_n;
- Deposited power P;

Output

- Average plasma density $n_e = n_i$;
- Average electron temperature T_e .

From input to output

System at equilibrium:

- Particles produced chemically = Particles lost in walls
- EM deposited power = Chemical losses + wall losses

ADAMANT

Wave-plasma coupling modeled by an EM solver.

- Full-wave approach
- Coupled surface and volume integral equations
- Arbitrarily-shaped circuit
- Inhomogeneous and anisotropic plasma

Plasma Model

- cold, and collisional
- multispecies
- non-uniform
- if magnetized, $B_0 \parallel z$ axis

ADAMANT

Wave-plasma coupling modeled by an EM solver.

- Full-wave approach
- Coupled surface and volume integral equations
- Arbitrarily-shaped circuit
- Inhomogeneous and anisotropic plasma

Plasma Model

- cold, and collisional
- multispecies
- non-uniform
- if magnetized, $B_0 \parallel z$ axis

 $\overline{\varepsilon}_{rk} = \begin{bmatrix} S_k & jD_k & 0\\ -jD_k & S_k & 0\\ 0 & 0 & P_k \end{bmatrix}$

ADAMANT

Input

- Plasma mesh;
- PEC mesh;
- Source type, number of feeding points, *f*;
- Gas Type;
- n_e, n_i, T_e, T_i, B₀, p_n.

Output

- Current distributions;
- Z-matrix, S-parameters;
- Scattered fields;
- Input, absorbed, and radiated power.

From input to output

- Surface Integral Equation
- Volume Integral Equation
- Excitation on the feeding port (voltage-gap approximation)

Global Model and ADAMANT coupling

Antenna Input Impedance, and Current Distribution

Cylindrical argon plasma column with: $n_0 = 1 \cdot 10^{19} \text{ m}^{-3}$, $T_e = 3 \text{ eV}$, $p_n = 0.02 \text{ mbar}$, L = 75 mm, and $\Phi = 2.5 \text{ mm}$

Antenna Input Impedance, and Current Distribution

Cylindrical argon plasma column with: $n_0 = 1 \cdot 10^{19} \text{ m}^{-3}$, $T_e = 3 \text{ eV}$, $p_n = 0.02 \text{ mbar}$, L = 75 mm, and $\Phi = 2.5 \text{ mm}$

A D > A A P >

The GPA Radiation Pattern

120

90

October 20th, 2017

11 / 26

60

< 🗇 🕨

Numerical, and Experimental Approach

Numerical Analysis - Plasma Source

Matlab genetic algorithm + Global Model

Decision-space variable	Optimization parameters
Plasma Radius Plasma Length	Plasma density of 10^{19} m^{-3}
Neutral Pressure Input Power	Minimize input power

Plasma Radius [mm]	5 - 10
Plasma Length [mm]	50 - 75
Neutral Pressure [mbar]	0.06 - 0.5
Input Power [W]	20 - 100

イロト イヨト イヨト イヨト

Numerical Analysis - Plasma Source

Matlab genetic algorithm + Global Model

	Case 1	Case 2	Case 3	Case 4
Plasma Radius [mm]	8.7	6.6	7.5	6.42
Plasma Length [mm]	54.6	56.2	78.9	72.5
Neutral Pressure [mbar]	0.75	0.39	0.09	0.4
Input Power [W]	84.1	23.8	94.2	28.9

3

イロト イヨト イヨト イヨト

Numerical Analysis - Antenna Performances

Coupler Metal-coupler length Metal-coupler Φ	Sleeve, Half-Nagoya 30 – 42 mm 14 – 30 mm
Antenna Configurations Plasma Φ	Monopolar, Bipolar 3 – 10 mm
Column length Column distance	50 — 130 mm 0 — 12 mm
Neutral gas	Ar, He, Ne
Neutral pressure	0.5 - 10 mbar
Working frequency	0.8 – 1.8 GHz
Voltage	1 V

・ロン ・四 ・ ・ ヨン ・ ヨン

CIS

3

Numerical Analysis - Antenna Performances

Generation Method

Plasma generation: 2 techniques

RF - External Electrodes

HF - Internal Electrodes

 $p_n = 1 - 2mbar$ $\phi = 5 - 6mm$ Higher, and more uniform n_e Dirty atmosphere

Pyrex vessel with ad hoc interface

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Pyrex vessel with ad hoc interface

Sealing process

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Pyrex vessel with ad hoc interface

October 20th, 2017

16 / 26

Vessel Preparation

Commercial electrodes sealed with a tube of the desired dimensions

- 一司

Vessel Preparation

Commercial electrodes sealed with a tube of the desired dimensions

Aging process

Diagnostic

Source Characterization

RF Discharges

Argon,
$$p_n = 1$$
 mbar,
 $\Phi = 10$ mm, $L = 130$ mm.

Argon, $p_n = 10$ mbar, $\Phi = 3$ mm, L = 130 mm.

→
→

19 / 26

October 20th, 2017

• • • • • • • •

Source Characterization RF Discharges

Argon, $p_n = 1$ mbar, $\Phi = 10$ mm, L = 130 mm.

Argon, $p_n = 10$ mbar, $\Phi = 3$ mm, L = 130 mm.

- ∢ 🗇 እ

Source Characterization

HF Discharges

We explored different gas pressures, and mixture

Gas	p _n [mbar]	n ₀ [m ⁻³]
Ar	1	$3.70\cdot 10^{18}\pm 1.84\cdot 10^{17}$
Ar - Ne	2	$3.84\cdot 10^{18}\pm 8.57\cdot 10^{16}$
Ar	2	$4.40\cdot 10^{18}\pm 5.09\cdot 10^{17}$
Ar - Hg	2	$3.18\cdot 10^{18}\pm 5.88\cdot 10^{16}$
Ar - Hg	1	$2.59\cdot 10^{18}\pm 1.50\cdot 10^{17}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

October 20th, 2017

3

20 / 26

Source Characterization

HF Discharges

Antenna Characterization - Reflection Coefficient

Argon, $p_n = 10$ mbar, $\Phi = 3$ mm, L = 130 mm.

CISOS G.COLOMBO

Antenna Characterization - Reflection Coefficient

Argon, $p_n = 10$ mbar, $\Phi = 3$ mm, L = 130 mm.

Antenna Characterization - Gain Pattern

Antenna testing with a well-known Log-Hallo Antenna as transmitter.

Friis Transmission Equation:

$$G_r = P_r - P_t - G_t - 10 \log_{10} \left(\frac{\lambda}{4\pi R}\right)^2$$

P. De Carlo (CISAS - STMS)

(日) (同) (日) (日)

Source Testing

Antenna Characterization

 P_r on the E-plane

 G_{max} on the E-plane

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

October 20th, 2017

23 / 26

Conclusions

- Development of a tool that couples the EM solution with the plasma transport, useful to study both GPAs, and Plasma Thrusters.
- Physical assessment on wave propagation in a plasma column.
- Physical assessment on the radiation properties of a plasma dipole.
- Design of 2 plasma sources to be exploited in a GPA.
- Preliminar assessment on the antenna performance of a GPA.

Publications

- Trezzolani, F., Magarotto, M., Manente, M., Moretto, D., Bosi, F.J., Gallina, G., De Carlo, P., Melazzi, D., Pavarin, D., Pessana, M., Development of a counterbalanced pendulum thrust stand for electric propulsion, (2017) 4th IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2017 - Proceedings, art. no. 7999554, pp. 152-157.
- Melazzi, D., De Carlo, P., Trezzolani, F., Lancellotti, V., Manente, M., Pavarin, D., Rigobello, F., Capobianco, A.-D., First experimental characterization of a gaseous plasma antenna in the UHF band, (2017) 2017 11th European Conference on Antennas and Propagation, EUCAP 2017, art. no. 7928410, pp. 3213-3217.
- Melazzi, D., De Carlo, P., Lancellotti, V., Trezzolani, F., Manente, M., Pavarin, D., Radiation properties of a Gaseous Plasma dipole, (2016) 2016 10th European Conference on Antennas and Propagation, EuCAP 2016, art. no. 7481458.
- Melazzi, D., De Carlo, P., Manente, M., Pavarin, D., Gaseous plasma antenna array for GPS: Overview and development status, (2015) Proceedings of the 2015 International Conference on Electromagnetics in Advanced Applications, ICEAA 2015, art. no. 7297264, pp. 997-1000.
- Melazzi, D., De Carlo, P., Manente, M., Lancellotti, V., Pavarin, D., Numerical results on the performance of gaseous plasma antennas, (2015) Proceedings of the 2015 International Conference on Electromagnetics in Advanced Applications, ICEAA 2015, art. no. 7297180, pp. 569-572.
- Trezzolani, F., Bosi, F., Melazzi, D., De Carlo, P., Selmo, A., Manente, M., Ferraris, S., Pessana, M., Pavarin, D., Development of a kW-level plasma thruster in project SAPERE-STRONG, (2015) Proceedings of the International Astronautical Congress, IAC, 10, pp. 8106-8113.

(日) (同) (日) (日)

THANKS FOR YOUR ATTENTION